

Rachel Klevit
Professor of Biochemistry
Focused on a career as a ballet dancer, Rachel took NO classes in science in high school (they interfered with ballet classes and rehearsals!). She danced with the Royal Winnipeg and the Portland Ballet companies for two years after graduating high school and then entered Reed College (Portland Oregon) where she took her first classes in Chemistry, Biology, and Physics and was enthralled. Graduating with a degree in Chemistry, Rachel became the first female Rhodes Scholar from the Pacific Northwest region (using dance as her “sport”), the awards having been opened to women only the year before. This took her to Oxford University where she began a lifelong fascination with NMR and its power to provide unprecedented insights into how proteins work. After a two-year post-doctoral fellowship at Duke University, she moved to University of Washington where she was on the Research Faculty in the Department of Chemistry. There, she used the brand-new techniques of two-dimensional NMR to solve the first de novo protein structure. She was hooked for life. She became Assistant Professor of Biochemistry at University of Washington and has happily remained in the department ever since. She is currently honored to be the Edmond H. Fischer/WRF Chair in Biochemistry.

Peter Brzovic
Research Associate Professor of Biochemistry
Peter is a Research Associate Professor in the Department of Biochemistry. He has a long-standing interest in using biophysical techniques to study protein complexes. He earned his Ph.D. at the University of California, Riverside where he worked on two projects. The first used using rapid-scanning stopped-flow spectroscopy to study the allosteric control of substrate channeling in the Tryptophan Synthase bienzyme complex from Salmonella typhimurium. The second utilized NMR spectroscopy to investigate the conformation of Insulin hexamers in response to the binding of ligands and metals. His growing interest in NMR led him to seek a post-doc position with Rachel Klevit’s group. Working with Rachel, they solved solution of structure of the BRCA1/BARD1 RING domain heterodimer which was subsequently shown to function as a Ubiquitin Ligase. This opened doors to several avenues of research including ongoing studies of BRCA1 and BARD1, the structure and function of Ubiquitin-Conjugating enzymes, and bacterial effector proteins that target or exploit eukaryotic Ubiquitin signaling pathways.

Pearl Magala
Adjunct Teacher
Pearl is an adjunct teacher, previous postdoctoral fellow, in the Klevit lab where she studies the structures and dynamics of a bacterial adhesion protein called FimH primarily through using NMR. Pearl is fascinated by the unusual properties of FimH including catch-bonds which are molecular interactions that paradoxically strengthen with increasing force and help bacteria evade clearance from the host during flow conditions in the intestinal and urinary tracts. She hopes that her research can aid in developing novel therapeutics to combat bacterial infections that impact communities worldwide. Pearl received her Ph.D. from Johns Hopkins University (Baltimore, MD) and her B.A from Mount Holyoke College (South Hadley, MA). Originally from Uganda, she misses the hot sunny weather, but despite her dependence on cryogen-enabled superconducting magnets she has warmed up to the Emerald City with her trusty space heater underneath her workstation.

Mia Cervantes
PhD Candidate
I am interested in how intrinsically disordered proteins function as well as their aggregation pathways. My research aims to uncover the mechanisms and kinetics of how small heat shock proteins chaperone the aggregation of amylogenic protein tau. As a co-mentor student in the Klevit and the Nath labs, I use a wide range of biochemical and biophysical techniques to characterize sHSP-tau interactions in depth.

Karen Dunkerley
Post-Doc
After a PhD focused on the final stages of the ubiquitin transfer cascade, from an RBR E3 ligase to substrate, I became increasingly fascinated with the apparent ‘decision making’ of E2 conjugating enzymes and the impact these enzymes have on the final result of ubiquitin transfer. The field has tremendous knowledge of the E2 impact on linkage type, site preference, mono- or poly-ubiquitylation, chain elongation, etc. However, the underlying reaction chemistries of ubiquitin transfer and how small changes between members of the highly conserved E2 family influences this is still largely unknown. Through biochemical and biophysical techniques, I will examine both well-known and uncharacterized E2s to expand our insight into what, at the most basic level, makes these enzymes work.

Maria Janowska
Post-Doc (completed), Staff Scientist
Maria’s interests are focused on two areas of protein research: 1) protein aggregation inhibition by chaperones and 2) intrinsically disordered proteins. She likes it best when these two are intertwined, which is exactly what she loves about small heat shock proteins. As she gets easily bored, she likes to try new methods and think of new ways to answer hard questions (which fits well since small heat shock proteins do not succumb easily to classical biochemistry methods). When she is not at work she enjoys the beautiful Pacific Northwest, either skiing or hiking, and when stationary at home she smokes meat and sings her heart out to the sound of her guitar.

Abigail Andersen
Research Scientist
I am a recent graduate from Western Washington University where I studied Biochemistry and worked in an organic synthesis laboratory. I joined the Klevit lab to learn more about biochemistry in a lab setting, and I am excited to start working on the BRCA1/BARD1 project.

Deanna Mische
Research Scientist
My research is aimed at characterizing the noncanonical yeast E2 Ubc6. I investigate its mechanism for ubiquitin discharge and attempt to identify critical residues between the E2 and Ub involved in coordinating this chemical reaction using NMR spectroscopy and in vitro enzymatic functional assays.

Natalie Stone
Research Scientist
I am interested in characterizing the N-terminal interactions of the small heat shock protein aB-crystallin through NMR and other biochemical techniques in order to better understand their contribution to the oligomerization and client binding of said protein. I also work on creating new constructs of aB-crystallin and related small heat shock proteins for study in our lab. Along with Thomas, I also manage the lab, handling purchasing, training, lab safety, and other miscellaneous tasks.

Lisa Tuttle
Staff Scientist
Lisa is a staff scientist in the Klevit lab. She manages the various lab instruments including the Magnets, SEC-MALS, CD, and fluorometer. Her research interests include fuzzy complexes formed by IDRs and their binding partners, specifically those involved in transcription regulation
Isabella Fu

Undergrad
My research is aimed to predict the reactivity of a new E2 using machine learning, biochemical assays, and coevolution analysis on three types of E2s with known reactivities.
(legal name: Jianong Chen)
Nicole Houppermans

Undergrad
My research in the lab is focused on studying the mechanism of the bacterial E3 Ligase SspH1. I conduct multiple types of enzymatic assays in order to learn more about SspH1’s mechanism.
Jasleen Kaur Sidhu

Undergrad
My research in the lab focuses on small heat shock protein HSPB5 and its disease mutant R120G. I am interested in learning how the loss of R120 affects the electrostatic dynamics and conformation of the structured alpha-crystallin domain of the protein.
Brian Pham

Undergrad
My research focuses on small heat shock proteins HSPB5 and HSPB1. I am interested in understanding how the identity and binding affinity of the transient domain interactions lead to a dynamic ensemble of homo- and hetero-oligomers.
Recent Lab Members

Klaiten Kermoade
Research Scientist
I assisted Sam Witus on the BRCA1/BARD1 project. I am a current Ph.D. Student at the University of Minnesota, in the 'Molecular Pharmacology & Therapeutics' (MPaT) Graduate Program.

Sam Witus
PhD Candidate (completed)
I am interested in the mechanisms underlying substrate ubiquitylation by RING-type E3 ligases. Specifically, I am looking at how several E3 ligases achieve remarkable specificity in targeting histone H2A in chromatin. To study this, I use fully reconstituted systems to perform biochemical assays in concert with protein NMR and cryo-EM.

Damien Wilburn
Post-Doc (completed)
Damien is a postdoctoral scientist in the Department of Genome Sciences interested in the rapid evolution of reproductive proteins. Despite the necessity of fertilization for most animal species, genes associated with reproduction tend to evolve faster than the rest of the genome. This diversity has made it challenging to elucidate the biochemical mechanisms underlying reproduction and fertilization. Damien integrates NMR-based structural biology with molecular evolution and proteomics to characterize how interacting male and female proteins rapidly coevolve through sexual arms races in mollusks (abalone), salamanders, and humans.

Chris Woods
PhD Candidate (completed)
Small heat shock proteins are chaperones that respond quickly to cellular stress events to prevent irreversible aggregation of client proteins. We are utilizing modern biophysical approaches and mutational analysis to gain mechanistic insight into small heat shock protein chaperone activity.

Katherine Reiter
Post-Doc (completed)
Katherine is a postdoctoral fellow in the Klevit lab. Her research focuses on probing conformational dynamics of ubiquitin signaling complexes, using structural mass spectrometry (HDX, XL-MS), NMR spectroscopy, and small-angle X-ray scattering (SAXS). Outside of the lab, Katherine enjoys characterizing slow and fast action fly rods in the PNW.
Klevit trainees: Pre-doctoral & Post-doctoral
Predoctoral—achieved PhD
Chris Woods
Scientist, Seagen
Sam Witus
Post-doc, UC Berkeley
Matt Cook
Senior Machine Learning Scientist, EchoNous
Hannah Baughman (co-mentor)
Post-doc, UCSD
Amanda Clouser
Development Scientist, AGC Biologics
Paul DaRosa (co-mentor)
Post-doc, Stanford Univ.
Katja Dove
Post-doc, Univ. of Utah
Vinayak Vittal
Biotech Manger, Competitive Intelligence, Seagen
Scott Delbecq
Scientist, InBios
Jonathan Pruneda
Assistant Professor, OHSU
Dawn Wenzel
Assistant Professor, Medical College of Wisconsin
Kate Stoll
Senior Policy Advisor, Center for Scientific Evidence in Public Issues
Clemens Heikaus
Head of Microbial Cleaning, Novozymes
David Fox
Head of US Crystallography, UCB
Devin Christensen
Res. Scientist, Univ of Utah
Angela Kantola
Associate Director, Research IT Experience & Engagement Lead, Merck
Monica Sekharan
Assistant Professor, Dept. of Chemistry & Chemical Biology, Rutgers Univ.
Lawrence Schauffler
Research Chemist, NOAA Fisheries, Alaska
Jose Meza (co-mentor)
Roopa Thapar
Institute Research Scientist, MD Anderson Cancer Center
Peter Bowers
Associate Director, Drug Discovery, UCLA Clinical and Translational Institute
Sandra Lee
MD
Mia Schmiedeskamp
Clinical Assistant Professor, University of Ill./Chicago
Ross Hoffman
Teaching
Melissa Starovasnik
VP, Genentech (retired)
Grace Parraga
Professor, Dept. of Medical Biophysics, Robarts Research, Canada
Postdoctoral—
Damien Wilburn
Assistant Professor, Ohio State University
Maria Janowska
Res. Scientist, UW
Pearl Magala
Scientist, Abbvie
Katherine Reiter
Research Scientist I, Center for the Development of Therapeutics, Broad Institute
Jianming Kang
Scientist, Primera Analytical Solutions
Tobias Ritterhoff
Res. Scientist, Max Delbrück Center for Molecular Medicine Berlin
Lisa Tuttle
Res. Scientist, UW
Mikaela Stewart
Assistant Professor, Texas Christian Univ.
Joel Rosenbaum
Research Assistant Professor, Department of Biological Sciences, University of Pittsburgh
Scott Delbecq
Scientist, InBios
Ying Lu
Res. Scientist, China
Itay Levin (co-mentor)
Director of Antibody Engineering, Biolojic Design
Stefan Jehle
Product Manager, Bruker
Catherine Eakin
Associate Director, Seattle Genetics
Margaret Daley
Director of Liberal Studies Program, Univ. of San Diego
Carol Rohl
Executive Director, Global Research IT & Informatics, Merck
David Hyre
Entrepreneur
Bryan Jones
Sr. Scientist, Eli Lilly
Peter Brzovic
Assoc. Prof., UW
Ponni Rajagopal
Founder at NstructuredesignS
Philip Hammen
Res. Scientist
Robert Xu
Sr. Scientist (retired)
Michael Wittekind
CEO, Olympic Protein Technologies